
Questions on Momentum

Calculate the mag	nitude of the total momentum of the trucks.		
	Total momentum = .		
The trucks collide	and stick together. Determine their velocity af	ter the collision.	
			••
			••
Velocity =			•••
		(Total 5	5 n
	re able to deduce much about the behaviour of	dinosaurs from the study of	
fossilised footprin	ts.		
fossilised footprin			
fossilised footprin	ts.		
fossilised footprin	show the path of a <i>Tyrannosaurus Rex</i> as it atta	Stationary Triceratops. Stationary Triceratops	
fossilised footprin The tracks below	show the path of a <i>Tyrannosaurus Rex</i> as it atta	acks a stationary <i>Triceratops</i> . Stationary	
fossilised footprin	show the path of a <i>Tyrannosaurus Rex</i> as it atta	Stationary Triceratops. Stationary Triceratops	
fossilised footprin The tracks below: 10 m The time between	show the path of a <i>Tyrannosaurus Rex</i> as it atta	Stationary Triceratops. Stationary Triceratops Triceratops	lex
The tracks below s	show the path of a Tyrannosaurus Rex as it atta Tyrannosaurus Rex	Stationary Triceratops. Stationary Triceratops Triceratops	?ex

Tyrannosaurus Rex is believed to have attacked its prey by charging and locking its jaws on the prey. *Tyrannosaurus Rex* would be at its maximum speed when it hit the stationary prey.

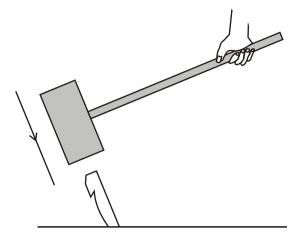
This <i>Tyrannosaurus Rex</i> has a mass of 7000 kg. Calculate its momentum just before it hits the <i>Triceratops</i> .	
Momentum =	(2)
<i>Triceratops</i> has a mass of 5000 kg. Calculate their combined speed immediately after the collision.	
Combined speed =	(3)
The skull of <i>Tyrannosaurus Rex</i> is heavily reinforced to withstand the force produced in such a collision.	
Calculate the force exerted on the <i>Tyrannosaurus Rex</i> if the time taken to reach their combined speed after the collision is 0.30 s.	
Force =	
	(3) (s)

3. The diagram shows an experiment with two trolleys.

Describe an experimental technique by which you could determine accurately the speeds of the trolleys after they separate. **(3)** State the total momentum of the trolleys as they move apart, and explain your answer. **(2)** The masses of A and B are 0.95 kg and 1.40 kg respectively. B moves off at 1.20 m s⁻¹. Calculate the speed υ of A. Speed **(3)** (Total 8 marks) Define **momentum** and state its unit. Unit: **(2)** A stationary nucleus of thorium-226 decays by alpha particle emission into radium. The equation for the decay is:

Initially the trolleys are at rest, in contact, on a horizontal bench. A spring-loaded piston is then

released in one trolley, pushing the trolleys apart.


4.

$^{226}_{90}$ Th	\rightarrow	$^{222}_{88}$ Ra	+	⁴ ₂ He

State the value of the momentum of the thorium nucleus before the decay
After the decay, both the alpha particle and the radium nucleus are moving.
Which has the greater speed? Justify your answer.
What can be said about the directions of travel of the two particles?
(3) (Total 6 marks)
A car travelling at 30 m s^{-1} collides with a wall. The driver, wearing a seatbelt, is brought to rest in 0.070 s .
The driver has a mass of 50kg. Calculate the momentum of the driver before the crash.
Momentum =
(2)
Calculate the average resultant force exerted on the driver during impact.
Average resultant force =(3)
Explain why the resultant force is not the same as the force exerted on the driver by the seatbelt.
(1) (Total 6 marks)

5.

6. A wooden mallet is being used to hammer a tent peg into hard ground.

The head of the mallet is a cylinder of diameter density of the wood is 750 kg m ⁻³ . Show that the	ne mass of the head is approximately 1.2 kg.	
		(3)
The head strikes the tent peg as shown at a spec Calculate the magnitude of its momentum chan		
	Momentum change =	
The head is in contact with the peg for 0.012 s. by the head during this period.	Estimate the average force exerted on the peg	(3)
	Average force –	

(2)

		ence to your calculations above, discuss whether a mallet with a rubber head of the	
•••••		would be more or less effective for hammering in tent pegs.	
•••••	•••••	(Total	11 ma
(a)	State	e Newton's second law of motion in terms of momentum.	
(b)		and blows steadily against a tree. The area of the tree perpendicular to the direction wind is 10 m^2 and the velocity of the wind is 20 m s^{-1} .	of
	(i)	Show that the mass of air hitting the tree each second is about 250 kg. (Density of air is 1.23 kg m^{-3} .)	of
	(ii)	Calculate the momentum of this mass of air when it is moving at 20 m s^{-1} .	
	(ii)		

	(iii)	Assuming that all the air is stopped by the tree, state the magnitude of the force exerted on the tree by the wind.		
		Force =		
		(Total 6 m	(2) arks)	
8.	Define lin	near momentum.		
			(1)	
	motion. trolleys as	iple of conservation of linear momentum is a consequence of Newton's laws of An examination candidate is asked to explain this, using a collision between two s an example. He gives the following answer, which is correct but incomplete. The is answer are numbered on the left for reference.		
	1. Du	ring the collision the trolleys push each other.		
	2. The	ese forces are of the same size but in opposite directions.		
		a result, the momentum of one trolley must increase at the same rate as the momentum he other decreases.		
	4. The	erefore the total momentum of the two trolleys must remain constant.		
	In which	line of his argument is the candidate using Newton's second law?		
			(1)	
	In which	line is he using Newton's third law?		
			(1)	
		ont is making one important assumption which he has not stated. State this on. Explain at what point it comes into the argument.		
	•••••			
			(2)	

Describe how you could check experimentally that momentum is conserved in a collision between two trolleys.
(4)
(Total 9 marks)
The diagram shows three trucks which are part of a train. The mass of each truck is 84 000 kg.
A B C
The train accelerates uniformly in the direction shown from rest to 16 m s^{-1} in a time of 4.0 minutes . Calculate the resultant force on each truck.
Resultant force =(3)
The force exerted by truck B on truck C is 11 200 N. Draw a free-body force diagram for truck B, showing the magnitudes of all the forces. Neglect any frictional forces on the trucks.

(4)

9.

he total mass of the train is 3.0×10^6 kg. Calculate the average power delivered to the train uring the accelerating process.	
Average power =	3)
he locomotive is powered by an overhead cable at 25 kV. Neglecting any power dissipation, alculate the average current drawn from the supply during the accelerating period.	
Average current =	• `
(2) (Total 12 marks)	